

The Plane distributed measurement infrastructure

Overview, insights & hindsights

Dario Rossi Professor

dario.rossi@telecom-paristech.fr
http://www.telecom-paristech.fr/~drossi

TELECOM ParisTech

Journée du Conseil Scientifique de l'Afnic, #JCSA2015, July 9th 2015

Today Internet

User viewpoint

Researcher viewpoint

Cloud viewpoint

ISP viewpoint

Motivations

Today Internet

"The Internet is the first thing that humanity has built that humanity doesn't understand, the largest experiment in anarchy that we have ever had."

Eric Schmidt – ex Google Exec. Chairman

Internet easurement Shed light on the Internet operational obscurity

Plane: avoid to reinvent the wheel & assist in building automated pilots!

Two kinds of easurements

- Passive
 - Observe network traffic without interference
 - Similar to Aristotle's observational method

Active

- Perturb the network & measure its reaction
- Similar to Newton's experimental method

Άριστοτέλης @aristotle

All science is either practical, poetical or theoretical (Metaphysics)

Sir Isaac Newton

Every body continues in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed upon it (Principia)

Passive **easurements**

Measurement

Active Measurements

(the Big Data moment)

- Traffic easurements orders of agnitude
 - 40Gbps (157PB/yr) full-packet processing at each passive sensor, with up to O(10⁷) traffic classifications per second...
 - O(10⁹) active probes in an Internet anycast census...
 (more on that later if time allows)
- To be compared with
 - The Large Hadron Collider (LHC), generates ~25PB/yr and O(10⁸) collisions per second
 - Sloan Digital Sky Survey (SDSS), generates ~73TB/yr
 - Capacity of the Human genome with 2-bits bases $\sim O(10^9)$

Architecture

Plane architecture: entities

Plane architecture: interfaces

Plane architecture: messages

Motivations > Measurement > Architecture > Ecosystem > Example of use > Summary

Plane architecture: messages

```
{
    "specification": "measure",
    "version": 0,
    "registry": http://ict-mplane.eu/reg,
    "label": "ping-aggregate-experiment1",
    "when": "2015-09-07 14:30:02.123 [...] /1s",
    "token": "0f31c9033f8fce0c9be41d4944",
    "parameters": {"source.ip4": "137.3.1.1",
        "destination.ip4": "137.194.164.1"},
    "results": ["delay.twoway.icmp.us.min",
        "delay.twoway.icmp.us.mean",
        "delay.twoway.icmp.us.max",
        "delay.twoway.icmp.count"]
    "resultsvalue": [[ 2390,2983, 6600,30]]
    }
```


grin If I'd known then that [ping] would be my most famous accomplishment in life, I might have worked on it another day or two and added some more options.

Plane architecture: transport

Indirect export uses custom protocols: IPFIX, FTP, BitTorrent, Apache Flume, RFC1149, RFC6214, etc.

Plane architecture: workflow

Plane architecture: Inter-domain

The broader measurement ecosystem

- "From global measurements to local management"
 - 10 partners, 3.8 MEUR, FP7 STREP
 - More focused use case: Build a framework out of
 - Knowledge sharing (e.g., joint work, Dagsthul seminars, etc.)
- IETF Large-Scale Measurement of Broadband Performance (LMAP)
 - Defines the components, protocols, rules, etc., but does not specifically target adding "a brain" to the system
 - Common core set, Largely interoperable
- IETF IP Performance Metrics (IPPM)
 - Registry related, we use its vocabulary as much as possible
- IETF IP Flow Information Export (IPFIX)
 - Indirect export related, active contributors
- Others in scope
 - IETF DOCTORS; tcpm; ConEx; NETCONF; IRTF NMRG; ETSI STQ; ITU SG12

Plane consortium

- 16 partners FP7 IP
 - 3 ISPs
- 11 MEUR
- 6 research centers
- 3 years long

Saverio Nicolini NEC

Dina Papagiannaki Telefonica

Ernst Biersack Eurecom

Brian Trammell ETH

Tivadar Szemethy NetVisor

Andrea Fregosi Fastweb

Dario Rossi **ENST**

Fabrizio Invernizzi Telecom Italia

Guy Leduc Univ. Liege

Pietro Michiardi Eurecom

Pedro Casas FTW

Plane achievements so far

- 3 RFCs, 5 drafts
- 80+ papers, including 4 Best paper awards and ACM SIGCOMM IMC & CoNEXT, IEEE INFOCOM
- Software

https://www.ict-mplane.eu/public/software and https://github.com/fp7mplane/
(Ready-to-use Virtual Machines under preparation)

• Check the demos on You Tube

https://www.youtube.com/channel/UCHGS6UIUKvGZTvt5DemmPaw

"Biased sampling":
Anycast geolocation as a showcase of mPlane achievements

IP Anycast

- Set of equivalent replicated servers sharing the same IP address, user routed to closest replica (in BGP sense)
- Question: where are Google DNS servers 8.8.8.8?

Geolocation technique

Measure Detect Enumerate Geolocate Iterate

D. Cicalese, et al. "A fistful of Pings: Accurate and lightweight Anycast enumeration and Geolocation", IEEE INFOCOM 2015 22

easurement infrastructure

RIPE Atlas vs PlanetLab

Footprint	VPs	ASes	Countries
RIPE Atlas	7k	2k	150
PlanetLab	~300	180	30

- Infrastructure? (Microsoft IP/24 Example)
- Anecdotal understanding
 - For some deployments, RIPE includes PlanetLab
 - For others, the union is greater than the sum of the parts!
- Plane enables/simplifies systematic studies

Anycast census

- O(10⁷) targets x O(10²) active sensors
- O(10³) targets /sensor /second
- O(10³) targets are anycast needle in the IPv4 haystack

- Overview
 - Measurements to shed light on Internet operational obscurity
- Insights
 - Measurement plane to facilitate expression of measurement capabilities and needs
 - Allow users to concentrate effort on hard problems
 - Avoiding time consuming tasks

- Hindsights
 - Crucial to foster adoption (GitHub, ready-to-use VMs) to reach a critical mass (incentive in proxying)

Motivations > Measurement > Architecture > Ecosystem > Example of use >

Summary

any thanks

?? | | //

Backup slides

Plane architecture: simplistic view

Plane architecture: gory details

Methodology overview

Measure

- PlanetLab
 - 300 vantage points
 - Geolocated with Spotter (ok for unicast)
 - Freedom in type/rate of measurement
 ICMP, DNS, TCP-3way delay, etc

- RIPE
 - 6000 vantage points

- Geolocated with MaxMind (ok for unicast)
- More constrained (ICMP, traceroute)

In this talk: min over 10 ICMP samples

The vantage points **p** and **q** are referring to two different instances if:

$$d(p;q) > d(p;t) + d(q;t)$$

Packets cannot travel faster than the speed of light

- Find a maximum independent set \mathcal{E}
 - of discs such that:
 - Brute force (optimum) vs Greedily from smallest (5-approximation)

$$\forall \mathcal{D}_p, \mathcal{D}_q \in \mathcal{E}, \qquad \mathcal{D}_p \cap \mathcal{D}_q = \emptyset$$

$$\mathcal{D}_p \cap \mathcal{D}_q = \emptyset$$

Geolocate

Detect
Speed of light
violations

Measure
Latency
Planetlab/Ripe

Enumerate
Solve MIS
Optimum (brute force)
5-approx (greedy)

Measure
Latency
Planetlab/Ripe

Enumerate
Solve MIS
Optimum (brute force)
5-approx (greedy)

- Classification task
 - Map each disk Dp to most likely city
 - Compute likelihood (p) of each city in disk based on:
 - ci: Population of city i
 - Ai: Location of ATA airport of city i
 - d(x,y): Geodesic distance
 - α : city vs distance weighting

$$p_{i} = \alpha \frac{c_{i}}{\sum_{j} c_{j}} + (1 - \alpha) \frac{d(p, t) - d(p, A_{i})}{\sum_{j} d(p, t) - d(p, A_{j})}$$

- Output policy
 - Proportional: Return all cities in D_p with respective likelihoods
 - Argmax: Pick city with highest likelihood

rationale: users lives in densely populated area; to serve users, servers are placed close to cities

airports: simplifies validation against ground truth (DNS)

Iterate

- Collapse
 - Geolocated disks to city area
- Rerun
 - Enumeration on modified input set

Performance at a glance

- Protocol agnostic and lightweight
 - Based on a handful of delay measurement O(100) VPs
 - 1000x fewer VPs than state of the art

Enumeration

- iGreedy use75% of the probes (25% discarded due to overlap)
- Overall 50% recall (depends on VPs; stratification is promising)

Geolocation

- Correct geolocation for 78% of enumerated replicas
- 361 km mean geolocation error for all enumerated replicas (271 km median for erroneous classification)