| 1000| 1010| 1010| 1000000| 1110000| 1000000| 1111111| 11111| 1001| 1110| 1111| 1111| 1111| 1001| 111| 1111| 1111| 1111| 1111| 1111| 1111| 1111| 1111| 1111| 1111| 111| 1111| 11| 111| 111| 111| 111| 111| 111| 111| 111| 111| 111| 111| 111| 11| 111| 111| 111| 111| 111| 111| 111| 11| 11| 111| 11|

From the Ground Up Security DNS-based Security of the Internet Infrastructure

Benno Overeinder
NLnet Labs

INTRO

About NLnet Labs

- Not-for-profit R&D company
 - open standards
 - open source software
 - innovation & expertise for benefit of open
 Internet
- Mission & goal
 - contribute to bridge gap between research and practical deployments

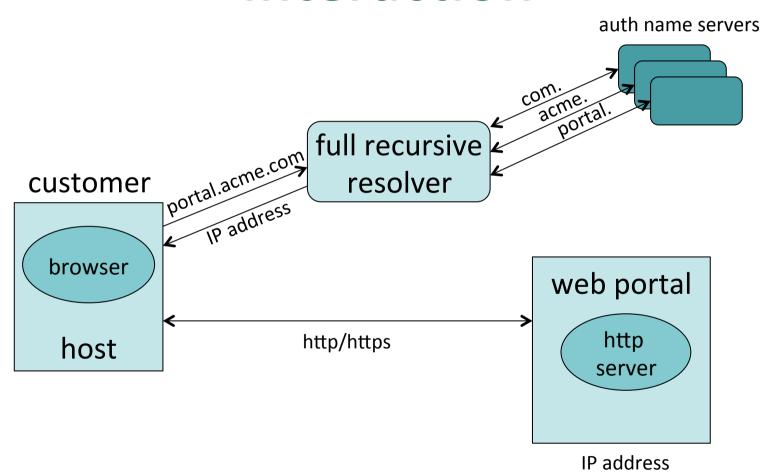
https://www.nlnetlabs.nl/labs/mission/

About NLnet Labs cont'd

- Open source software
 - infrastructure: NSD, Unbound
 - provisioning: OpenDNSSEC, ...
 - libraries: getdns API, ldns
- Community activities
 - standards: IETF (drafts and RFCs)
 - research & operational insights: RIPE, NANOG, ...
 - policy and governance: ICANN, ...

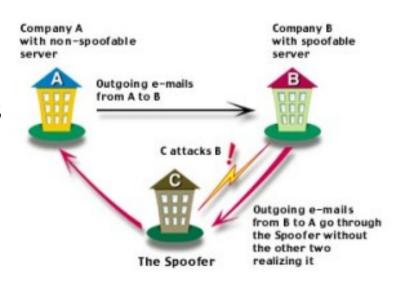
How DNS(SEC) provides building blocks for security and privacy

FROM THE GROUND UP SECURITY


We-/Showcase Scenarios

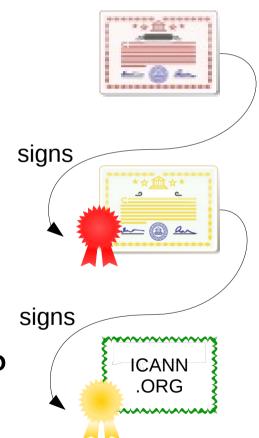
End-to-end authenticated and secured/ encrypted communication

- Secure customer interaction in web portal
- Secure email
- Instant messages/chat with OTR

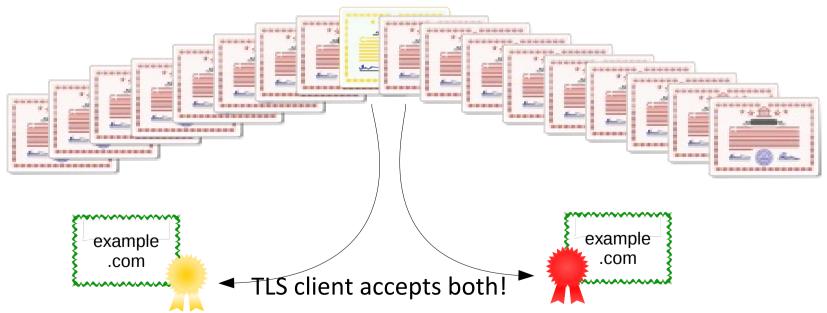

• ...

Customer–Web Portal Interaction

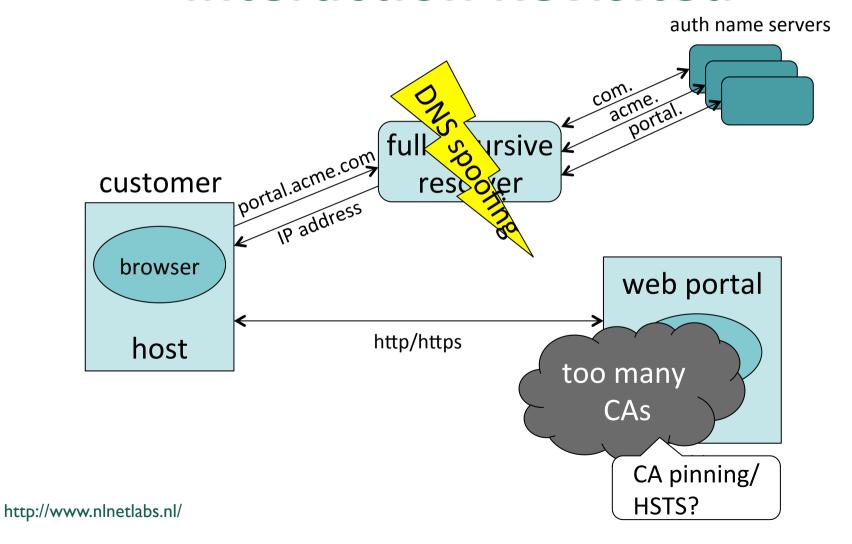
DNS Spoofing


- DNS Spoofing by cache poisoning
 - attacker flood a DNS resolver with phony information with bogus DNS results
 - by the law of large numbers, these attacks get a match and plant a bogus result into the cache
- Man-in-the-middle attacks
 - redirect to wrong Internet sites
 - email to non-authorized email server

PKIX/X.509 Certificate Tree


- Certification authorities (CAs)
 - sign child certificates
 - should verify child identity
 - can be trust anchors (TAs)
- TLS clients
 - trust their trust anchors
- All is good? CAs are trustworthy?

Root Certificate
AKA "Trust Anchor"



The "Too Many CAs" Problem

- TLS clients have abundance of TAs
 - modern web browsers have 1300+ TAs
 - any of them can issue certificate for example.com

Customer–Web Portal Interaction Revisited

NLnet

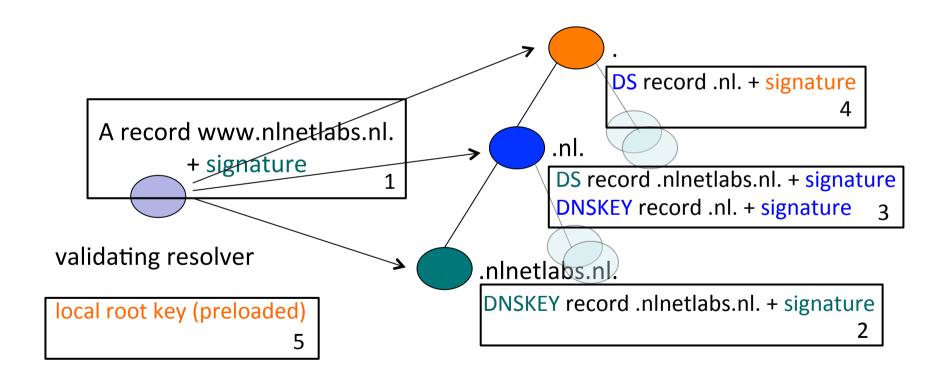
DNS SECURITY EXTENSIONS & DNS-BASED AUTHENTICATION OF NAMED ENTITIES

DNSSEC and **DANE** to the Rescue

DNSSEC

validates the authenticity of the DNS data using digital signatures

DANE

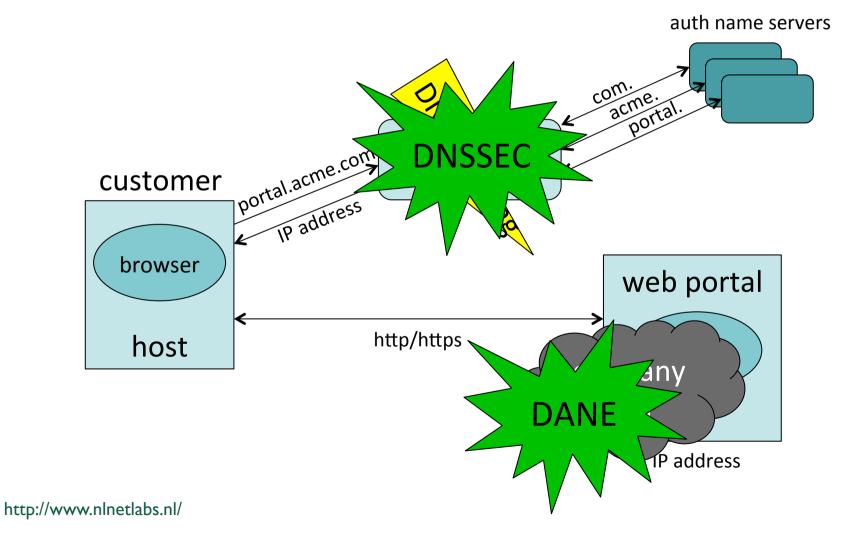

 allows one to securely specify which TLS/SSL certificate an application or service should use

What is DNSSEC? Slide Version

- Digital signatures are added to responses by authoritative servers for a zone
- Validating resolver can use signature to verify that response is not tampered with
- Trust anchor is the key used to sign the DNS root
- Signature validation creates a chain of overlapping signatures from trust anchor to signature of response

credits Geoff Huston

DNSSEC and Validation of the Columbia C


DANE: DNS-based Authentication of Named Entities

- Securely specify which certificate an application or service should use
 - works perfectly fine with existing CA cerficates
- DANE defines TLSA resource record and usage field
 - 0 CA specification
 - 1 specific TLS certificate
 - 2 trust anchor assertion
 - 3 domain issued certificate

DNSSEC, DANE and X.509

DNS-based Secure Customer— Web Portal Interaction

NLnet

Closing the gap

SECURING THE FIRST MILE

The First Mile: From Host to Resolver

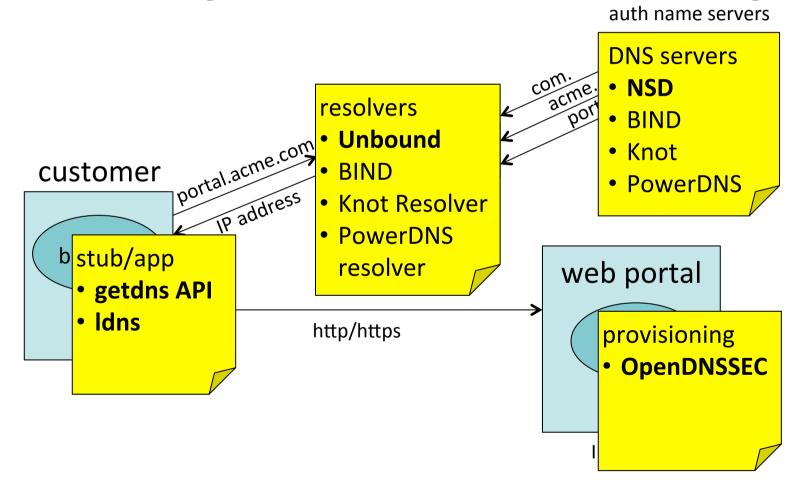
- Host/application DNS reliance on validating full resolver
 - resolver in trust realm?
 - resolver in local network, ISP, or open validating recursor (Google Public DNS, OpenDNS, OpenNIC DNS, Level 3, Verisign, ...)
- Privacy and authentication of resolver
 - DNS queries considered privacy sensitive information

The First Mile: From Host to Resolver

auth name servers acme. portal val. recursive portal.acme.com customer resolver IP address browser web portal http/https http host server IP address

DPRIVE: DNS over TLS

- Host stub resolver or application queries recursive resolver over encrypted TLS
 - TLSA records for stub/app to full recursor
- Privacy
 - DNS queries to resolver are encrypted on the wire
- In-band authentication of recursive resolver
 - TLSA chain extension (draft-ietf-tls-dnssec-chainextension)
 - not solved yet: resolver IP configured on host or with DHCP


OTHER SHOWCASES OF DNSSEC, DANE AND DPRIVE

Email and SMTP

XMPP/CHAT

WRAPPING UP

Open Source Software for Security from the Ground Up

Summary

- DNSSEC, DANE and new DPRIVE bring security to next level
- Deploy DNSSEC!
 - not trivial, but open source deploy and provisioning tools are available
 - DANE and DPRIVE for "free" with DNSSEC
- Encrypt all in face of privacy and confidentiality (RFC 7624)