QUIC FOR SATELLITE COMMUNICATIONS

JCSA - AFNIC

31/08/2021

Nicolas KUHN

QUIC FOR SATELLITE COMMUNICATIONS

INTRODUCTION TO SATELLITE COMMUNICATIONS

cnes

Myth #1: SATCOM systems are quite specific

Indeed:

- Limited frequency resource (regulation, etc.)
- Dish alignment
- No standards for network infrastructure (lack of interoperability)

BUT:

• High level architecture similar to other access networks

Myth #2: Latency is huge with SATCOM access

Indeed:

• For geostationary accesses, there is an important propagation delay (RTT of 500ms)

BUT:

- End-to-end latency is not just about signal propagation delay (e.g. Bufferbloat in cellular networks) [1]
- (honestly) it is not that bad

B. Briscoe; A. Brunstrom; A. Petlund; D. Hayes; D. Ros; I. J. Tsang; S. Gjessing; G. Fairhurst; C. Griwodz; M. Welzl, "Reducing Internet Latency: A Survey of Techniques and their Merits," in IEEE Communications Surveys & Tutorials

Myth #2: Latency is huge with SATCOM access

Light page – Wikipedia type

) Applications Emplacements Système 🥑 🔄			t₁ ‡((: « × 🖙 mer. 5 avril, 11:35
Mozilla Firefox	\ +		
🕘 🕕 wikipedia.fr	Ĩ	✓ X] Q Rechercher	☆ 自 ↓ 俞 ♥ 3
E charge seat 01 /Da E video est			

TOOWAY satellite Internet access :

- Solution furnished by ISP ALSATIS with EUTELSAT operator
- 20Mbps download / 6 Mbps upload

cnes

Myth #2: Latency is huge with SATCOM access

Heavy page - news media type

) Applications Emplacements Système 🈏 📧 Mozilla Firefox			t ‡ ‡(i ≪ ∞ mer. 5 avril, 11:33
Preferences × Nouvelonglet	* +	✓ A Rechercher	☆ 自 ∔ ⋒ ॼ ≣
			0
	Q Rechercher		
[][······	
			······
1			
🗖 star@scoot.01:/Do 📄 uidao.sat	A Maxilla Elector		

TOOWAY satellite Internet access :

- Solution furnished by ISP ALSATIS with EUTELSAT operator
- 20Mbps download / 6 Mbps upload

QUIC FOR SATELLITE COMMUNICATIONS – AFNIC-JCSA

Not a Myth #3: SATCOM systems require 'middleboxes'

Performance Enhancing Proxy (PEP) – RFC 3135 "magic" mix of transport technologies

- Split TCP connections
- Transparent compression

No support of the most recent improvements at the servers or clients

QUIC FOR SATELLITE COMMUNICATIONS

PEP-TCP : A LIMITED SOLUTION WITH QUIC TRAFFIC

QUIC FOR SATELLITE COMMUNICATIONS - AFNIC-JCSA

Transport layer issues in GEO systems

- Connection initialization:
 - Setting up the connection requires three round trips, impacting the moment from which the actual data can be transmitted
- Required window size:
 - To fully exploit the available capacity, it is necessary to increase the sending buffers are the client and the server

Reliability:

- Packet loss detection and correction is slow (end-to-end retransmission performance is also affected on GEO access)
- Convergence of congestion control:
 - The exponential increase in data rate is considerably slowed down for a GEO satellite.

QUIC FOR SATELLITE COMMUNICATIONS - AFNIC-JCSA

cnes ·

- Connection initialization:
 - Setting up the connection requires three round trips, impacting the moment from which the actual data can be transmitted
 - > [PEP-TCP] Can enable TCP Fast-Open
- Required window size:
 - To fully exploit the available capacity, it is necessary to increase the sending buffers are the client and the server
 - > [PEP-TCP] Improved by custom TCP buffers in TCP PEP

Reliability:

- Packet loss detection and correction is slow (end-to-end retransmission performance is also affected on GEO access)
- > [PEP-TCP] Loss recovery in splitted in three segments
- Convergence of congestion control:
 - The exponential increase in data rate is considerably slowed down for a GEO satellite.
 - > [PEP-TCP] Improved by custom TCP AIMD in TCP PEP
 - > [PEP-TCP] Improved by custom TCP initial windows in TCP PEP

PEP-TCP : A limited solution with QUIC traffic

Connection initialization:

.

- Setting up the connection requires three round trips, impacting the • moment from which the actual data can be transmitted
- [PEP-TCP] Can enable TCP Fast-Open \geq
- ≻ [QUIC] Saving one (or two) round trip
- . Required window size:
 - To fully exploit the available capacity, it is necessary to increase the ٠ sending buffers are the client and the server
 - [PEP-TCP] Improved by custom TCP buffers in TCP PEP \geq
 - ≻ [QUIC] Limited by end points

Reliability:

- Packet loss detection and correction is slow (end-to-end retransmission ٠ performance is also affected on GEO access)
- \geq [PEP-TCP] Loss recovery in splitted in three segments
- \geq [QUIC] Loss recovery is end-to-end
- Convergence of congestion control: ٠
 - The exponential increase in data rate is considerably slowed down for a GEO satellite.
 - [PEP-TCP] Improved by custom TCP AIMD in TCP PEP \geq
 - ≻ [PEP-TCP] Improved by custom TCP initial windows in TCP – PEP
 - [QUIC] End points congestion control may not be adapted \geq

Overview of a QUIC packet

12 @ cnes

Cnes ·

	Who is the winner ?	Why ?	What can we do to help QUIC ?	What are our chances ?
Connection initialization				
Required window size				
Reliability				
Convergence of congestion control				

Disclaimer : Assumes end-to-end QUIC not specifically deployed in a SATCOM access network

QUIC FOR SATELLITE COMMUNICATIONS

CONNECTION INITIALIZATION

Connection initialization

Google QUIC performance over a public SATCOM access International Journal of Satellite Communications and Networking THOMAS, L.; DUBOIS, E.; KUHN, N.; LOCHIN, E. 2019

Connection initialization

Google QUIC performance over a public SATCOM access International Journal of Satellite Communications and Networking THOMAS, L.; DUBOIS, E.; KUHN, N.; LOCHIN, E. 2019

Cnes ·

QUIC vs PEP-TCP

	Who is the winner ?	Why ?	What can we do to help QUIC ?	What are our chances ?
Connection initialization	QUIC	Reduced handshake Either deployment of ORTT	No need !	
Required window size				
Reliability				
Convergence of congestion control				

Disclaimer : Assumes end-to-end QUIC not specifically deployed in a SATCOM access network

QUIC FOR SATELLITE COMMUNICATIONS

REQUIRED WINDOW SIZE

Required window size

Updates on QUIC Over In-sequence Paths with Different Characteristics PANRG Interim Meeting – June 2020 Nicolas Kuhn

Required window size

- Client and servers use GO-QUIC
 - https://github.com/lucas-clemente/quic-go
 - Modified to support the download of objects in sequence or in parallel
- Object size
 - Short (40 KB), medium (290 KB), long (4 MB), large (66 MB)

Layer	Parameter	Default	H-BDP	Unit
	DefaultMaxCongestionWindowPackets	1000	2500	packets
	InitialCongestionWindow	32	32	tcpMSS
Connection	MaxTrackedSkippedPackets	10	50	packets
Connection	MaxTrackedSentPackets	2 500	10 000	packets
				microse
	MinPacingDelay	100	10	с
	InitialMaxStreamData	512	6000	KB
Stream	DefaultMaxReceiveStream			
	FlowControlWindow	6	12	MB

20 @ cnes

Required window size

RTT : 600ms

Object	Mode	Default	H-BDP	(H-BDP - Default)/De fault
Short: 10x//0KB	Seq	7,65	7,45	-3%
	Par	3,65	2,54	-30%
Mod 10x 292KB	Seq	11,13	10,91	-2%
	Par	5,20	4,08	-21%
Long 10x/1/0KP	Seq	31,57	20,77	-34%
	Par	21,36	10,78	-50%
	Seq	61,74	29,35	-52%
Laige 2200.390KB	Par	60,17	26,79	-55%
All 31 Obj: 111.211KB	All	51,03	26,16	-49%

RTT: 100ms

Obj	Mode	Default	H-BDP	(H-BDP - Default)/D efault
Short 10x/0KP	Seq	1,44	1,39	-4%
Short. 10x40Kb	Par	,64	,54	-16%
Mod 10y 202KP	Seq	2,58	4,00	55%
Med IOX 292KB	Par	1,10	,95	-13%
L ang 10. / 1/ 0// D	Seq	9,12	8,46	-7%
Long 10x4149KB	Par	7,65	7,49	-2%
	Seq	23,42	23,43	0%
Large 2x66.390KB	Par	23,19	23,23	0%
All 31 Obj: 111.211KB	All	19,55	19,52	0%

QUIC Over In-sequence Paths with Different Characteristics - draft-kuhn-quic-4-sat-00 PANRG - IETF 105 Nicolas Kuhn, Emile Stephan, John Border, Gorry Fairhurst

21 @ cnes

QUIC vs PEP-TCP

	Who is the winner ?	Why ?	What can we do to help QUIC ?	What are our chances ?
Connection initialization	QUIC	Reduced handshake Either deployment of ORTT	No need !	
Required window size	PEP-TCP	Specifically sized windows	Convince big players to increase window size	
Reliability				
Convergence of congestion control				

Disclaimer : Assumes end-to-end QUIC not specifically deployed in a SATCOM access network

QUIC FOR SATELLITE COMMUNICATIONS RELIABILITY

Loss in SATCOM SYSTEMS

End to end measurements on a real satellite public access

Loss identified by missing QUIC packets are the receiver

- Gilbert-Elliot model
- Probability to go from « good » to « bad » state = 0.018 !

Losses in SATCOM systems : identification and impact MAPRG – IETF 106 Nicolas KUHN, Emmanuel DUBOIS, Alexandre FERRIEUX, François MICHEL, Emmanuel LOCHIN

Impact of transmission losses on a TCP connection

- 0 797 10 0 0.0001 8.5 0.15 935 0.0005 1528 5.2 0.48 0.001 1863 4.2 0.58 0.005 7140 0.89 1.1
- Losses in SATCOM systems : identification and impact MAPRG – IETF 106 Nicolas KUHN, Emmanuel DUBOIS, Alexandre FERRIEUX, François MICHEL, Emmanuel LOCHIN

- Experimental evaluations of QUIC showed good performance for short flows with public accesses
- For long flows, the E2E losses can have a huge impact

Where are the losses ?

Losses in SATCOM systems : identification and impact

MAPRG – IETF 106

Nicolas KUHN, Emmanuel DUBOIS, Alexandre FERRIEUX, François MICHEL, Emmanuel LOCHIN

• Add coding /retransmission with an encapsulation tunnel

cnes · · ·

Side note :

'soon to be' RFC on the interaction between congestion control and coding :

Coding and congestion control in transport – Nicolas Kuhn, Emmanuel Lochin, François Michel, Michael Welzl https://datatracker.ietf.org/doc/draft-irtfnwcrg-coding-and-congestion/

Carsten Bormann Localized Optimizations over Path Segments LOOPS BOF @ IETF 108July 31, 2020

• Deployment of congestion control 'ignoring' losses

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson. 2016.

BBR: Congestion-Based Congestion Control: Measuring bottleneck bandwidth and round-trip propagation time. Queue 14, 5 (September-October 2016), 20–53. DOI:https://doi.org/10.1145/3012426.3022184

QUIC vs PEP-TCP

	Who is the winner ?	Why ?	What can we do to help QUIC ?	What are our chances ?
Connection initialization	QUIC	Reduced handshake Either deployment of ORTT	No need !	$\overline{}$
Required window size	PEP-TCP	Specifically sized windows	Convince big players to increase window size	
Reliability	PEP-TCP	Loss recovery includes a large RTT	Add coding with an encapsulation tunnel Deployment of congestion control ignoring losses	<u> </u>
Convergence of congestion control				

Disclaimer : Assumes end-to-end QUIC not specifically deployed in a SATCOM access network

QUIC FOR SATELLITE COMMUNICATIONS

CONVERGENCE OF CONGESTION CONTROL

On the need for a quick convergence to data-rate

Tests based on open platform

https://forge.net4sat.org/kuhnn/openbach-example-simple

- QUIC :
 - PICOQUIC implementation
 - BBR (PICOQUIC implementation of BBR)
- Variable RTT (100 ms -> 500 ms)
- File size : 500 KB, 1MB, 10 MB, 100MB
- Bottleneck (Forward/Return)
 - 1 Mbps / 100 kbps
 - 10 Mbps / 2 Mbps
 - 50 Mbps / 25 Mbps
 - 200 Mbps / 100 Mbps
 - With a 10 MB file and 1 Mbps, the link is used for all RTT
 - **•** For shorter files (1MB), increasing the RTT severely impacts link utilization
 - When the data rate is high (250 Mbps), even a 100 MB transfer does not utilize the link
 - Increasing the file size increases the link utilization

QUICK connection establishment with QUIC

Target (1 object, 5.3MB)

Google QUIC performance over a public SATCOM access International Journal of Satellite Communications and Networking THOMAS, L.; DUBOIS, E.; KUHN, N.; LOCHIN, E. 2019

31 @ cnes

0-RTT-BDP extension : Description

- During a previous session, current RTT (current_rtt), CWND (current_cwnd) and client's current IP (current_client_ip) are stored as saved_rtt, saved_cwnd and saved_client_ip;
- 2. When resuming a session, the server might set the current_rtt and the current_cwnd to the saved_rtt and saved_cwnd of a previous connection.

https://datatracker.ietf.org/doc/html/draft-kuhn-quic-Ortt-bdp

Implemented in PICOQUIC by F. Simo, D. Pradas https://github.com/private-octopus/picoquic/pull/1209

0-RTT-BDP extension : QLOG example of QUIC 0RTTBDP connection

https://datatracker.ietf.org/doc/html/draft-kuhn-quic-Ortt-bdp

0-RTT-BDP extension : Emulated performance

Evaluations based on	40			
draft-kuhn-quic-4-sat-06 scenarios	(sdo		1	
Implementation of draft-kuhn-quic-Ortt-bdp-07	06 te			
Picoquic https://github.com/private-octopus/picoquic/pull/1073	3it Ra			
Network characteristics:	20 Xeq			
50 Mbps download / 10 Mbps upload	Rece	M		
RTT : 650 ms	10			
Congestion control		44		I
CUBIC	0	0	2 4	
0-RTT-BDP reaction:				
jump to preciously measured capacity (not recommended but "easy to in	nplement"	as a fi	rst step))

Beware the potential issue in using bytes_in_flight metric

Application level

2 MB transfer - median

Without 0-RTT	With 0-RTT	With 0-RTT-BDP
4,3 s	3,4 s	2,9 s

0-RTT-BDP extension : Real satellite access Performance

50 runs

0-RTT-BDP extension : Real satellite access Performance

Gain for a full 500kB or 1MB transfer (including HTTP GET)

Gain due to the arrival of HTTP request one RTT in advance (and large satellite RTT !)

IETF Status

draft-kuhn-quic-Ortt-bdp includes 3 methods 2 methods are implemented in picoquic BDP frame - <u>https://github.com/private-octopus/picoquic/pull/1209</u> local storage of CWND, RTT parameters - <u>https://github.com/private-octopus/picoquic/pull/1204</u>

Next

Looking for other implementers Integration in QUIC interop matrix

QUIC vs PEP-TCP

	Who is the winner ?	Why ?	What can we do to help QUIC ?	What are our chances ?
Connection initialization	QUIC	Reduced handshake Either deployment of ORTT	No need !	
Required window size	PEP-TCP	Specifically sized windows	Convince big players to increase window size	
Reliability	PEP-TCP	Loss recovery includes a large RTT	Add coding with an encapsulation tunnel Deployment of congestion control ignoring losses	<u> </u>
Convergence of congestion control	PEP-TCP	Slow ramp up to available data-rate	Deployment of congestion control with aggressiv ramp up Deployment of ORTTBDP !	•••

Disclaimer : Assumes end-to-end QUIC not specifically deployed in a SATCOM access network

QUIC FOR SATELLITE COMMUNICATIONS CONCLUSION

cnes

Conclusion

	Who is the winner ?	Why ?	What can we do to help QUIC ?	What are our chances ?
Connection initialization	QUIC	Reduced handshake Either deployment of ORTT	No need !	$\overline{}$
Required window size	PEP-TCP	Specifically sized windows	Convince big players to increase window size	
Reliability	PEP-TCP	Loss recovery includes a large RTT	Add coding with an encapsulation tunnel Deployment of congestion control ignoring losses	•••
Convergence of congestion control	PEP-TCP	Slow ramp up to available data-rate	Deployment of congestion control with aggressiv ramp up Deployment of ORTTBDP !	

QUIC : dangerous opportunity for SATCOM systems

- Good performance for short files
- Cheaper ground segments (no more middleboxes)
- Sensitivity to losses
- Complex 'in the middle' optimization

To guarantee end user performances

- Risks of blocking QUIC traffic
- TCP is not dead !

40 @ cnes

Ċ

Conclusion

Big thanks to AFNIC

Questions?

Going further

On going IETF documents

- draft-kuhn-quic-Ortt-bdp: Transport parameters for 0-RTT connections. N. Kuhn, E. Stephan, G. Fairhurst, T. Jones and C. Huitema.
- draft-jones-tsvwg-transport-for-satellite: Enhancing Transport Protocols over Satellite Networks. T. Jones, G. Fairhurst, N. Kuhn, J. Border and E. Stephan.

IETF mailing list

- Encrypted Transport over Satellite (EToSat)
- <u>https://www.ietf.org/mailman/listinfo/Etosat</u>

Some pointers

- Thomas, L, Dubois, E, Kuhn, N, Lochin, E. Google QUIC performance over a public SATCOM access. Int J Satell Commun Network. 2019; 37: 601– 611. https://doi.org/10.1002/sat.1301
- Ahmed, T., Dubois, E., Dupé, J.-B., Ferrús, R., Gélard, P., and Kuhn, N. (2018) Software-defined satellite cloud RAN. Int. J. Satell. Commun. Network., 36: 108–133. doi: 10.1002/sat.1206.
- N. Kuhn, F. Michel, L. Thomas, E. Dubois and E. Lochin, "QUIC: Opportunities and threats in SATCOM," 2020 10th Advanced Satellite Multimedia Systems Conference and the 16th Signal Processing for Space Communications Workshop (ASMS/SPSC), 2020, pp. 1-7, doi: 10.1109/ASMS/SPSC48805.2020.9268814.
- J. Deutschmann, K. Hielscher and R. German, "Satellite Internet Performance Measurements," 2019 International Conference on Networked Systems (NetSys), 2019, pp. 1-4, doi: 10.1109/NetSys.2019.8854494.
- J. Border, B. Shah, C. Su and R. Torres, "Evaluating QUIC's Performance Against Performance Enhancing Proxy over Satellite Link," 2020 IFIP Networking Conference (Networking), 2020, pp. 755-760.
- A. Custura, T. Jones and G. Fairhurst, "Impact of Acknowledgements using IETF QUIC on Satellite Performance," 2020 10th Advanced Satellite Multimedia Systems Conference and the 16th Signal Processing for Space Communications Workshop (ASMS/SPSC), 2020, pp. 1-8, doi: 10.1109/ASMS/SPSC48805.2020.9268894.

Contact:

<u>nicolas.kuhn.ietf@gmail.com</u>